EJERCICIOS PROPUESTOS VECTORES

Ejercicio 2.1.- Un vector situado en el plano XY tiene una magnitud de 25 unidades y forma un ángulo de 37º con la abscisa. Determine sus componentes rectangulares.

Solución:

$$A_X = 20$$

$$A_{v} = 15$$

Ejercicio 2.2.- La componente x de un vector que está en el plano XY es de 12 unidades, y la componente y es de 16 unidades. ¿Cuál es la magnitud y dirección del vector?.

Solución:

$$\begin{aligned} A &= 20 \\ \theta_x &= 53, 1^o \end{aligned}$$

Ejercicio 2.3.- Encuentre las componentes rectangulares, las magnitudes y los ángulos directores de los vectores $\vec{A}, \vec{B} \ y \ \vec{C}$ que van desde el punto a hasta el punto b, desde el punto c hasta el punto d y desde el punto e hasta el punto f, respectivamente, en el espacio coordenado cartesiano:

$$a=(2,-1,7);$$
 $b=(9,4,2)$

$$c=(9,4,2);$$
 $d=(2,-1,7)$

$$e=(0,0,0);$$
 $f=(2,2,1)$

Solución:

$$\begin{split} A_\chi &= 7; \quad A_y = 5; \quad A_z = -5; \quad A = 9,9 \\ \theta_{Ax} &= 45,0^o; \quad \theta_{Ay} = 59,7^o; \quad \theta_{Az} = 120,3^o; \end{split}$$

$$\begin{split} B_\chi &= -7; \quad B_y = -5; \quad B_z = 5; \quad B = 9,9 \\ \theta_{Bx} &= 135,0^{\circ}; \quad \theta_{By} = 120,3^{\circ}; \quad \theta_{Bz} = 59,7^{\circ}, \end{split}$$

$$\begin{split} &C_{_{X}}=2; \quad C_{_{y}}=2; \quad C_{_{z}}=1; \quad C==3 \\ &\theta_{_{Cx}}=48,2^{o}; \quad \theta_{_{Cy}}=48,2^{o}; \quad \theta_{_{Cz}}=70,5^{o} \end{split}$$

Ejercicio 2.4.- Un vector \vec{A} tiene una magnitud de 9 [cm] y está dirigido hacia +X. Otro vector \vec{B} tiene una magnitud de 6 [cm] y forma un ángulo de 45° respecto de la abscisa positiva. El vector \vec{C} tiene una magnitud de 15 [cm] y forma un ángulo de 75° respecto del eje +X. Determine el vector resultante.

$$\vec{R}=17,1\hat{i}+18,7\hat{j}$$

Ejercicio 2.5.- Dado el vector $\vec{A} = 2\hat{i} + 4\hat{j} - 4\hat{k}$, determine sus ángulos directores.

Solución:

$$\theta_x = 70.5^{\circ}; \quad \theta_v = 48.2^{\circ}; \quad \theta_z = 131.8^{\circ}$$

Ejercicio 2.6.- Dados los vectores:

$$\vec{A} = 10\hat{i} + 5\hat{j} + 3\hat{k}$$
; $\vec{B} = 3\hat{i} - 4\hat{j} + 2\hat{k}$; $\vec{C} = 2\hat{i} + 6\hat{i} - 4\hat{k}$

Encontrar:

- a) $\vec{A} + \vec{B}$
- b) $\vec{A} \vec{B}$

c)
$$2\vec{A} - 3\vec{B} + \frac{\vec{C}}{2}$$

- d) $\vec{A} \cdot 3\vec{C}X\vec{B}$
- e) Los ángulos directores de BXC

Solución:

a)
$$\vec{A} + \vec{B} = 13\hat{i} + \hat{j} + 5\hat{k}$$

b)
$$\vec{A} - \vec{B} = 7\hat{i} + 9\hat{i} + \hat{k}$$

c)
$$2\vec{A} - 3\vec{B} + \frac{\vec{C}}{2} = 12\hat{i} + 25\hat{j} - 2\hat{k}$$

d)
$$\vec{A} \cdot 3\vec{C}X\vec{B} = -594$$

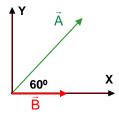
e)
$$\theta_x = 82.5^{\circ}$$
; $\theta_y = 58.7^{\circ}$; $\theta_z = 32.4^{\circ}$

Ejercicio 2.7.- Hallar la resultante de los siguientes desplazamientos: 3 [m] hacia el este; 12 [m] hacia el este 40º hacia el norte y 7 [m] hacia el oeste 60º hacia el sur.

Solución:

$$\vec{R} = 8.7\hat{i} + 1.6\hat{j}$$

Ejercicio 2.8.- Sumar dos vectores de magnitudes 8 y 5 que forman un ángulo de 60º entre sí.



Solución:

$$\vec{R} = 9\hat{i} + 6,9\hat{j}$$

Ejercicio 2.9.- Un barco se desplaza sobre una superficie de agua tranquila a razón de $10 \left[\frac{km}{h}\right]$ y entra en dirección O 60° S en una corriente cuya dirección es E y que se mueve con una velocidad de $12 \left[\frac{km}{h}\right]$. ¿Cuál será su velocidad resultante?

$$\vec{R} = \left(7\hat{i} - 8.7\hat{j}\right) \left[\frac{km}{h}\right]$$

Ejercicio 2.10.- Un barco avanza hacia el norte 60 [km]; luego cambia de curso y navega en alguna dirección hacia el sureste (no necesariamente S 45° E) hasta llegar a una posición a 50 [km] de distancia del punto de partida, en una dirección E 20,6° N respecto de dicho punto. Determine la longitud y el rumbo de la segunda parte de la travesía.

Solución:

 $\bar{d}_2 = (46.8\hat{i} - 42.4\hat{j})[km]$ O, lo que es igual, navega 63,2 [km] en dirección E 42,2° S

Ejercicio 2.11.- Demuestre que los vectores $\vec{A} = \hat{i} - 3\hat{j} + 2\hat{k}$ y $\vec{B} = -4\hat{i} + 12\hat{j} - 8\hat{k}$ son paralelos.

Solución:

 $\vec{A}X\vec{B} = \vec{0}$; es cierto

Ejercicio 2.12.- Encontrar un vector \vec{B} que esté en el plano XY, que sea perpendicular al vector $\vec{A} = \hat{i} + 3\hat{j}$

Solución:

 $B_x + 3B_y = 0$ el que se satisface para $B_x = 3a$ y $B_y = -a$, con a=cualquier número real.

Ejercicio 2.13.- Dados los vectores $\vec{A} = 3\hat{i} - 2\hat{j}$ y $\vec{B} = \hat{i} - 2\hat{j}$, encontrar su producto vectorial y comprobar que ese vector es perpendicular a \vec{A} y a \vec{B} .

Solución:

 $\vec{A} \cdot \vec{A} \times \vec{B} = 0$ luego son perpendiculares $\vec{B} \cdot \vec{A} \times \vec{B} = 0$ luego son perpendiculares

Ejercicio 2.14.- Dados los vectores $\vec{A} = -3\hat{i} + 2\hat{j} - \hat{k}$; \vec{B} en el plano XY de módulo 10 y dirección 120º respecto de +X; y $\vec{C} = -4\hat{j}$. Determinar:

- a) La magnitud de $\vec{A} + \vec{B} \vec{C}$
- b) El ángulo que forma AXB con el eje Z
- c) Proyección de \vec{B} \vec{C} en dirección de \vec{A}

Solución:

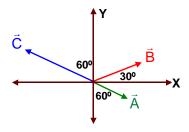
a)
$$|\vec{A} + \vec{B} - \vec{C}| = 16.8$$

b)
$$\theta_z = 147,9^{\circ}$$

c) 10,8

Ejercicio 2.15.- A partir de los vectores que se muestran en la figura, en que los módulos de \vec{A} , \vec{B} y \vec{C} son 10, 20 y 30 respectivamente, determine:

- a) Proyección de \vec{A} en dirección de $\vec{C} \cdot \vec{B}$
- b) Un vector \vec{D} tal que $2\vec{D} + \vec{B} 2\vec{A} = \vec{0}$



Solución:

- a) $A_{F} = -9.2$
- b) $\vec{D} = -10\hat{j}$

Ejercicio 2.16.- Dados los vectores

$$\vec{A} = 4\hat{i} + 6\hat{j} \quad y \quad \vec{B} = -6\hat{i} - \hat{j} \ . \label{eq:defA}$$

Encontrar:

- a) El ángulo formado por los vectores.
- b) Un vector unitario en la dirección del vector \vec{A} $2\vec{B}$.

Solución:

- a) $\theta = 133,2^{\circ}$
- b) $\hat{u} = 0.89\hat{i} + 0.45\hat{j}$

Ejercicio 2.17.- Hallar el área del triángulo formado por los vectores $\vec{A} = 3\hat{i} + 2\hat{j} + \hat{k}$; $\vec{B} = -\hat{i} + 5\hat{j} - 4\hat{k}$ y su diferencia.

Solución:

Area = 12,03

Ejercicio 2.18.- Dados los vectores: $\vec{A} = -\hat{i} + 3\hat{j} + z\hat{k}; \qquad \vec{B} = x\hat{i} + 6\hat{j} - \hat{k} \qquad y$ $\vec{C} = 2\hat{i} - 4\hat{j} + 3\hat{k}.$

- a) Si \vec{A} es paralelo a \vec{B} encontrar los valores de las incógnitas x, z.
- b) Encontrar un vector unitario paralelo a $\vec{C} \; .$
- c) Hallar un vector en el plano XY $\text{perpendicular a } \vec{C} \text{ y de m\'odulo 5}.$

Solución:

a)
$$z = -\frac{1}{2}$$
; $x = -2$

b)
$$\hat{c} = 0.37\hat{i} - 0.74\hat{j} + 0.56\hat{k}$$

c)
$$\vec{A} = 4,48\hat{i} + 2,24\hat{j} \text{ o bien } \vec{A} = -4,48\hat{i} - 2,24\hat{j}$$

Ejercicio 2.19.- Dados los vectores: $\vec{A} = \vec{P} \cdot \vec{Q}$ y $\vec{B} = \vec{P} + \vec{Q}$. Determinar $\vec{P} \cdot \vec{Q}$ si B=6 y A=4.

$$\vec{P} \cdot \vec{Q} = 5$$

Ejercicio 2.20.- Encontrar el área y los ángulos interiores de un triángulo cuyos vértices son las coordenadas: (3,-1,2), (1,-1,-3) y (4,-3,1).

Solución:

Area = 6,4

$$\alpha == 26,284^{\circ}; \quad \beta = 76,851^{\circ}; \quad \gamma = 76,851^{\circ}$$

Ejercicio 2.21.- Hallar el valor de r tal que los vectores $\vec{A} = 2\hat{i} + r\hat{j} + \hat{k}$ y $\vec{E} = 4\hat{i} - 2\hat{j} - 2\hat{k}$ sean perpendiculares.

Solución:

r = 3

Ejercicio 2.22.- Hallar el área del paralelogramo cuyas diagonales son: $\vec{E} = 3\hat{i} + \hat{j} - 2\hat{k}$ y $\vec{T} = \hat{i} - 3\hat{j} + 4\hat{k}$

Solución:

Area = 8,7

Ejercicio 2.23.- Los vectores \vec{A} y \vec{B} forman entre sí un ángulo de 45° y el módulo de \vec{A} vale 3. Encontrar el valor de la magnitud de \vec{B} para que la diferencia $\vec{A} \cdot \vec{B}$ sea perpendicular a \vec{A} .

Solución:

B = 4.2

Ejercicio 2.24.- Tres vectores situados en un plano tienen 6, 5 y 4 unidades de magnitud. El primero y el segundo forman un ángulo de 50º mientras que el segundo y el tercero forman un ángulo de 75º. Encontrar la magnitud del vector resultante y su dirección respecto del mayor.

$$R = 9.9; \quad \theta_x = 45.80$$